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ABSTRACT

The response of two parachute systems---
impervious hemisphere and disc-gap-band---was
studied as a function of wind shear and altitude.
Both systems were simulated on a digital computer
as rigid bodies. The computer program included
the effects of Magnus forces and viscous damping.
Equations for a parachute falling in a wind field
at 0° angle of attack are presented, as is a tech-
nique for determining error as a function of altitude
on either parachute. The computer program dynamic
model and equations of motion are summarized, and

all computer data outputs are supplied.
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SECTION 1
PROBLEM STATEMENT AND CONCLUSIONS

The response of two parachute systems (impervious hemisphere and
disc-gap-band) was studied as a function of wind shear (de/dh) and alti-

tude. A brief comparison of the two systems follows:

Impervious Disc-Gap-
Hemisphere Band

Flying (Reference) Diameter (ft.) 15.0 12.5
Line Length (ft.) 28.0 18.75
Number of Lines 24 18
Total Weight (1b.) 8.3 8.0
Store Weight (1b.) 6.5 5.0
Nominal CD (dimensionless) 1.40 1.34
Stable Angle of Attack (deg.) 45 0

The two parachute systems, with principal dimensions, are illus-
trated in Figures la and lb; aerodynamic coefficients are summarized in
Figures 2a and 2b, Figure 3 shows the form of the wind field through
which each parachute descent was simulated., Figure 4 is a comparison of
descent rates vs. altitude for the two parachute systems,

When the five values of VW are combined with the five values of

2Ah (as listed below), 25 separate wind fields result:

v

w 2Ah
(ft./sec.) (ft.)
30 5,000
40 10,000
60 20,000
100 30,000
200 40,000



Thus, each parachute was subjected to simulated wind shears ranging from

T U .-

0.0015 sec.-1 to 0.08 sec.-l. The results of these computer runs are ap-

pended in the form of direct computer output listings. Analysis of these

listings has resulted 'in a number of conclusions;

]-v

For a given parachute configuration, measurement error as-
sociated with a wind shear is inversely proportional to air
density and directly proportional to the velocity-altitude

gradient; that is,

i

E = (2m/C8) (1/p) (dV_/dh)

v, 2/g) (aV, /dn).

The altitude increment through which the parachute falls
while its horizontal velocity approaches to within E of the
actual wind velocity is a function of fall rate alone. It
can be found by the equation Ah = b(sz/g), which gives the
altitude interval Ah, in which the parachute attains a hor-
izontal velocity of V@ + E(1 + l/eb), These two relation-
ships were first suspected when plots of the wind-measurement
error as a function of altitude were examined, These plots
showed the product EpP to be nearly constant for either para-
chute, Subsequent dimensional analysis showed the error
equation to be of the form given above, and finally a solution
to the differential equation of motion of the parachute in a
wind gradient (Appendix A) confirmed the "“steady-state" error

function.

Perturbing moments (such as a Magnus effect) are required in
order to cause the unstable hemispherical parachute to cone,

rather than oscillate in a plane.

The wind-following error for the coning hemispherical parachute

is of the same form as that for the disc-gap-band, with a



sinusoidal error component superimposed as a consequence of

parachute oscillation, This error function is of the form
E = (sz/g) (4V_/dh) + K sin (@t +9),

where W is the precession rate of the system in radians per
second. The effect of this precession component on wind-
following error may be seen clearly in Figure 10, Figure

16 is a comparison of the function (sz/g) for the two para-
chutes studied and allows the specific combinations of weight
and drag area studied to be compared., The difference in wind-
following error implied by Figure 16 is, in fact, due to a
difference in drag-to-weight ratio, or descent rate, between

the two systems,

Finally, it was found that the coning parachute exhibited a
variable effective drag coefficient and did not fall with a
constant dynamic pressure over the altitude range studied.
The drag coefficient was found to vary from approximately
0.8 at 230,000 feet to 1.5 at 150,000 feet. This effect,
shown in Figures 5, 6, and 7, is apparently brought about

by the combination of lift, drag, and Magnus forces on the
parachute, coupled with the three-dimensional phugoid motion

of the system,



'SECTION II
SUMMARY OF COMPUTER RUNS

Early computer runs showed that the hemispherical parachute, when
released at altitude, oscillated in a plane with a total excursion of ap-
proximately + 45°. The system, as described by early versions of the
gsix-degree-of~freedom computer program, did not have sufficient cross-
wind perturbing force to cause the parachute to oscillate in a conical mode.

The computer program was modified to include the effects of a
Magnus force brought about by the action of the cross velocity combined
with the parachute spin about the longitudinal axis of the system., The
addition of this Magnus force causes the hemispherical parachute to fall
with a coning motion such that the path described by the system center
of gravity is a helix, with radius and wavelength both functions of spin
rate. This oscillation is a type of three-dimensional phugoid, with the
parachute longitudinal axis maintaining a constant angle of attack.

Further refinements to the program included modification of the
viscous damping term before actual data runs were commenced. The final
program is described in Appendix C.

A total of 63 computer runs was conducted on the hemidpherical
parachute in order to establish aerodynamic coefficients which would
simulate the actual in-flight observed behavior of this parachute at high
altitudes.’’? As a result of these studies the coning period of the hem-
ispherical parachute was maintained at an average of 7 seconds over the

altitude interval of interest.

Whitock, Charles H. and Murrow, Harold N., "Performance Characteristics
of a Preformed Elliptical Parachute at Altitudes Between 200,000 and _
100,000 Feet, Obtained by In-Flight Photography," NASA TND-2183, Feb. 1964,

Murrow, Harold N., "Observations of Parachute Characteristics at Altitudes
Above 100,000 Feet by Means of In-Flight Photography,' presented at Sympos-
ium on Parachute Technology and Evaluation, El Centro, Calif. April 7-19,
1964,
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Preliminary runs on the stable disc-gap-band configuration showed
that parachute to be relatively unaffected by Magnus forces, and it was
concluded that data runs need not include the effect of spin. A total of
33 computer runs verified this fact, and supplied preliminary data on para-
chute behavior.

Ten more computer runs were used to determine initial velocities for
the two parachutes so that none of the data running time would be invalid
while the parachutes were attaining their respective terminal velocities.
The technique proved successful for the disc-gap-band parachute, but it
was finally decided to release the hemispherical parachute from an altitude
of 300,000 feet, with a constant density .atmosphere from 300,000 to 240,000
feet, so that the system would be at terminal velocity when entering the
first wind layer at 240,000 feet.

At the conclusion of these computer runs, 50 data runs were per=
formed in which each of the two parachutes was subjected to a total of 25
sawtooth wind fields from altitudes of 240,000 feet to 150,000 feet. The
wind fields were selected so they would be identical with those used in a

previous analog study of the hemispherical parachute.3

Murrow, Harold N. and Barker, Lawrence E., Jr. "An Analytical Study of the

Wind~Following Characteristics of a Parachute at High Altitudes," presented

at Instrument Society of America Fall Conference, Sept. 11-15, 1961.



SECTION III
RESULTS

Figures 8 and 9 contain typical plots of the two components of
parachute horizontal velocity vs. altitude and time, and of the wind-
sensing error vs. altitude and time. 1In addition, wind and parachute
descent velocity are included as functions of altitude, and, for the
hemispherical parachute, spin rate is shown as a function of altitude
and time. These two figures show, typically, what is contained within
the data runs. TFigure 10 is a summary of wind-sensing error vs. altitude
for the two parachute systems in the wind field noted on the figure; the
periodic nature of the hemispherical parachute behavior can be clearly
seen from the figure.

Of particular interest is the response of the two parachute
systems to wind shears and to changes in the wind-velocity/altitude
gradient. Since each parachute is falling through a sawtooth wind field,
the parachute velocity is at times less than, and at times greater than,
the actual wind velocity. This effect can be seen clearly in Figure 11.

As the parachute falls through the altitude interval Ah, its hor-
izontal velocity increases, with the ratio of parachute velocity to wind
velocity also increasing. As long as the wind velocity is greater than
that of the parachute, the parachute velocity will continue to increase.
However, when the wind velocity has decreased to the point that it is
equal to the parachute velocity, the parachute velocity also begins to
decrease. At the lower altitudes it can be seen that the parachute vel-
ocity inflection points occur closer and closer to the wind velocity
inflections, and that the parachute velocity appears to lag the wind
velocity by some ''steady-state' error.

This "'steady-state" error is of interest, as it is a measure of
the difference between parachute and wind velocities in a changing wind
field. Also of interest is the altitude through which the parachute falls

while attaining this ''steady-state'" condition,



Figure 12 is a plot of error vs, altitude for the disc-gap-band
parachute in various wind fields,* The error can be seen to fall within
an envelope boundary, and at the lower altitudes to define this boundary
curve, If this error boundary is plotted vs, altitude as in Figure 13,
a definite exponential character is at once noted,

Analysis of the response of a rigid, six-degree-of-freedom para-
chute model (Appendix A) has shown that the exponential nature of the
error boundary observed during the computer studies is, in fact, due to
the exponential character of the atmosphere. Appendix A shows that the
error function E is of the form E = (szlg) (de/dh). This equation
allows the response characteristics of parachutes to be compared. When

the equation is rearranged in the form

v 2
z

E =
dVW/dh g

it can be seen that, for the same wind field, any parachute will exhibit
an error proportional to the square of its descent rate,

For the two systems studied, Figure 16 shows the function(VZZ/g)
taken from computer listings. The difference between the two parachutes
is simply due to their different drag-to-weight ratios

The theoretical "steady-state" error (V /g) (dV /dh) may be com-
pared to the computer-determined error E by plotting the function (V /g)

against EV§7EE .
If the correlation between theoretical error and computer-deter-
mined error were perfect, all points would fall on the straight line

E - sz
de/dh g

3

Two measures of the degree of correlation are (1) to determine the slope of
the least-squares straight line giving the best fit to the data being compar-

ed; and (2) to determine the standard error of the correlation, defined by

*
All of the early conclusions were drawn from the disc-gap-band
data since they did not contain the periodicity associated with
the oscillating hemispherical parachute.



s =(1l E_ . =z ,
n |dV /dh g
w
where S is the standard error of correlation and n is the number of points

being compared.
v 2

Figures 14 and 15 are plots of —r versus -%. for the two para-

de7dh 4

chutes, and show how the computed points compare with the theoretically

perfect straight<line correlation.

The calculated least-squares slope and standard errors are as follows:

Fig. 14 : Fig. 15

Disc-Gap- Hemis-
Band pherical

Least-Squares Slope 1.00777 0.94938
Standard Error 47 ft. ' 161 ft.

The comparatively poorer correlation for the hemispherical para-
chute is apparently due to point scatter from the data reduction technique
described in Appendix B.

Appendix A also shows the altitude interval, from a wind-velocity

inflection point, through which the parachute falls in attaining a velocity
Vx = V& + (sz/g) (de/dh), or in reachingthe '"steady-state' error condi-

tion, which 1s approximately equal to Ah = 3V22/g. A plot of this function
18 shown in Figure 16 for the two parachutes,

The excellent results achieved on the disc-gap-band parachute
prompted an effort to reduce equivalent data from the oscillating hemis-
pherical parachute listings. Determination of the "mean steady-state"
error for this parachute was hampered by the fact that the parachute vel-
ocity was oscillating about some mean value, Plots of position and velocity

similar to Figure 8 showed that the parachute motion consisted of
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a helix superimposed upon a velocity-altitude characteristic similar in
nature to that for the disc-gap-band. Arithmetic averaging of parachute
position vs. time, and attendant mean velocity and error determinations,
proved of little value.

The technique described in Appendix B was arrived at as a method
of determining "mean steady-state' error over altitude increments small
enough that the data proved wvalid.

While developing this technique, it was discovered that plots of
the hemispherical parachute's fall rate vs. altitude did not exhibit the
characteristic of constant dynamic pressure usually associated with sub-
sonic descent at terminal velocity., This effect can be seen clearly in
Figure 5, which compares parachute fall rate from the computer listings
to a constant dynamic pressure curve corresponding to the same fall rate
at 150,000 feet. When this effect was discovered, computer runs on a
nonspinning (and therefore nonoscillating) parachute were performed to
see if the apparent variation in parachute effective drag coefficient
was caused by the oscillation. Figure 6 shows the results of this com-
parison. The nonspinning parachute does indeed fall with a constant
dynamic pressure!

Some mechanism, as yet unexplained, associated with the coning
parachute brings about an increase in effective drag coefficient as the
parachute descends.

Figure 7 shows the ratio of effective drag coefficient at any
altitude to that at 150,000 feet. Also included on this figure is a

similar curve used in previous analog studies of parachute behavior,

Murrow and Barker, . loc., cit.



SECTION 1V
RECOMMENDATIONS

1. Since wind-sensing error is proportional to wind gradient
. 2
(de/dz) and to the square of parachute descent velocity (Vz ), the most
fruitful area for accuracy improvement would seem to be a reduction of

parachute descent rate,

2. As a consequence of instability, parachutes which exhibit an
oscillating motion are contributing an additional error component to
measured winds because of the motion of their centers of gravity. This
error component should be eliminated by making all future wind measure-
ments with a stable parachute system such as the disc-gap-band. Such a
parachute would exhibit a much more favorable'signal-to-noise'" ratio than

the unstable impervious hemisphere,.

3. Further, improvements in data reduction should take into
account both wind gradient and altitude increment through which the para-

chute falls in attaining the "'steady-state'" error,

4, Finally, further research is needed on both the immediate
practical problem of reducing the effects of parachute motions on fine-
scale wind data, and in understanding the physical mechanisms producing

both coning and change in effective drag coefficient,

10



NOTE

For definitions of notation used in Figures 8

and 9, pp. 20-103, see Appendix C, paragraphs
3, 4, and 5.
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Figure 2a. Aerodynamic Coefficients for Hemispherical
Parachute®

Sources: (a) Hoerner, S.F., Fluid Dynamic Drag, published
by author, 1958, pp 13-24., (b) Heinrich, H.G., "Drag and
Stability of Parack.tes," Aeronautical Engineering Review,
June 1956.
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Figure 2b, Aerodynamic Coefficients for Disc-Gap-Band
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* N
Source: Heinrich, H.G., Haak, E.L., and Niccum, R.J.,

"High Altitude Disc-Gap-Band Parachute," report published
by Department of Aeronautics and Engineering Mechanics,
University of Minnesota, under sponsorship of G.T.
Schjeldahl Co.
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APPENDIX A

The equations of motion of a parachute falling in a wind field at

zero angle of attack can be written:

2
mg

Figure A-1. x-z Plane Projection of Parachute Showing Forces
and Velocities.

FD=qCDS
1 2
1=3p Y
FL =0
i]i IVWX- VXI
m =g = 9468 A
r



the restriction of zero lift,

cs |Vw2 ~ Vyl
| Ve
A
mg.

These three equations describe the motion of the parachute, when

considered as a rigid body under the influence of drag and gravity, with

The three equations may be rewritten as follows:

dv
—X

dt

dv

q9CpS lv -vl
wX X

dv

The common parameter

equations to two:

dv
dt

dv
dt

™[Vl
qCDS l wa _ Vyl
™|Vl
_ qC_ S
g = - DV Vzl'
Vel
S
' may be eliminated, reducing the three
T
de
&k T8 v _-v|
'V , | “wx X |
z
R
dt IV -V i.
5 wy y
el

Over a short altitude interval, Az, the parachute descent velocity

Vz may be considered constant

dv

, and the first derivative with time z

dt

very much less than gravitational acceleration,




Hence, the quantity

dvz + g
dt g
—_— —5. - constant (k)
Vzl IV, |
over small altitude intervals. av av

Therefore, the equations for 3?5 and EEX- may be rewritten,

Ty o+ 1w, = W,
dt
and
Yy o = kv
dt y y
The wind function used in the computer studies is of the form
dex
wa = Vﬁxo + dz Z
and
dv
\Y _ Vv + w z .,

The wind field was simulated in only the x-z plane; however, the
results are valid for the y-z plane. Over small altitude increments the

descent rate Vz may be considered constant; therefore,

{ . \

d
\Y =V + VWX V t.
WX WXO —— z
dz

With this substitution of a linear time function for wa, the equa-

tion of motion of the parachute in the x-z plane may be written:

de + kV = kax + k dex Vzt.
dt X © dz

The solution of this first-order differential equation for VX is



v = Kty 4 -eKhHy
X X0 WXO0

'

+ [t - 1-e-kt] dex\ v .
k dz ’ z

If the parachute has fallen for a sufficiently long time, t, a "“steady-

state" condition is approached, and the horizontal velocity may be found by

letting
-kt
e k - 0 )
whence,
Y =V + dex vt - 1 dex vV .
X WXO _— z
dz dz

The first two terms of this equation are the wind velocity at time, t,

(or altitude z); hence the equation for VX may be written

V .
z

V = V -

1 dex
X WX k

dz

The difference wa - Vx is defined as the wind-sensing error E and may be

seen to be equal to

k = %—' ’
z
from which 2
dv v
E = WX z
dz g

d . .
wa is, of course, the wind shear gradient, and Vz represents the parachute

dz

descent rate.



V2

The quantity -%— may be interpreted as the physical distance be-

tween the parachute and an inertialess wind sensor falling at the same
rate through the same wind field.*\

Of additional interest is the altitude through which the parachute
falls while the "steady-state" error is being approached.

For parachute and wind velocities both initially zero,

A A

v 2 dex
and the error E may be seen to be the 'steady-state' error, ol B s

g dz

multiplied by the factor 1- -%E-. The quantity ekt may be set equal to
e : '

some known value, and the time t, or altitude increment Az solved for.

t
e ke k = =B) M=Vt 1-e”Kt
Vv z
z
1 sz
1/e E -g_ ..6321
2 2 2v 2
1/e = Z .8647
k g8
3 3 3V22
1/e x —8—— . 9502
Table Al

%*Reed, Wilmer H. III, "Dynamic Response of Rising and Falling Balloon
Sensors with Application to Estimates of Wind lLoads on Launch Vehic-
les," NASA TN D-1821, October 1963,



From Table Al it can be seen that the altitude increment Az may be found
by the equation -

sz2
A2=—g— ’
where
2E = 1 - 1/eP-
v dv .
Z WX
g Adz

From these equations it can be seen that when the parachute has

2
fallen approximately three times the "lag distance" vz » the wind sens-
‘ 8

ing error attains 95%{of its theoretical value. This same conclusion was
reached in the report referenced on page A-5,
The value of this altitude increment, Az, should dertainly influence

data sampling and averaging intervals.
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APPENDIX B

The technique for determining error as a function of altitude on
the rotating parachute is as follows:
Since the method of superposition holds, the two error components,
E1 and E2, must be of the form
E, = A+ Bt + C sin gt + D cos @t

E, = C cos gt - D sin t,

2

where the component (A + Bt) of E, represents a linearization of the mean

1
error.

Both E1 and E2 are listed at l-second intervals. From E2 it is
possible to calculate the parachute period of oscillation, 7.

If three points, closely spaced in time, are selected such that

t = tO + At ,

the three values of E1 corresponding to the three points in time may be
used to find the error E1 = A + Bto at time te This is accomplished by
performing the following multiplications and summing

E) x G G x GTR

2 - 2 cos B
to—A¢ o
+(E) + A& —=1——) = A+ Bt
lt 2-2cos 8 o °
o
The angle 8 is found by
o = 2n At

T

The term A + Bto is the “steady-state'" value of error at time to.
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APPENDIX C

COMPUTER PROGRAMMING

The dynamic model and equations of motion, which are now programmed

and operational in an IBM 7040 computer, are summarized below.

Two coordinate systems are utilized: a ground coordinate system
based on a flat, nonrotating earth, and a body axis system,
1. Ground Coordinate System, gy

Origin - at intersectibn of plumb line from parachute deployment

point -and earth's surface

8 - 8 plane - normal to plgmb line

8, axis - east

8, axis - north

8, axis - up, in plumb line direction

The gravitational force, wind, atmosphere, and initial position
and velocity are defined in the g, system, The parachute position and
velocity are specified in this system as outputs, and the er¥or function
(th§ difference between parachute and wind velocity) 1is expressed in the
g, system.
2, Body Axis System, bi
Origin = at the parachute=-payload CG
b1 - b2 plane normal to line joining CG with canopy crown

b, - along line joining CG with canopy crown, positive in

3

direction of crown.



Since the axis b, is a principal axis, the inertia temsor f1] s
defined in the bi system, The aerodynamic coefficients are defined in
this system, and the aerodynamic forces and moments are best suited to compu-
tation in this system prior to transformation into the g8 system for trajectory

computation.

The transformation between the 8 system and the bi system 1a:
ab - '}
v [a“] e,

where [a“] is a time-dependent coordinate transformation matrix specified
originally as an initial condition, computed by using the components of the
angular velocity vector, 'GP, obtained from integration of the differential

equations of rotational motion,

3. Symbols
Symbol Definition , Units
bl ]
%2 L Unit Vectors Along Body Axes Dimensionless
T’q
CD Drag Coefficient Dimensionless
CL Lift Coefficient Dimensionless
Cm Moment Coefficient Dimensionless
Gmd Damping Moment Coefficient ft.3
D Drag Force 1b,
d Parachute Great Circle Diameter . ft,
E Wind-Sensing Error ft./sec.

c-2



<) ¥

=l

Definition
Gravitational Constant

Gravitational Acceleration

Unit Vectors Along Ground Axes

Inertia Tensor
Lift Force
Aerodynamic Moment

Aerodynamic Damping Moment

Total Moment Due to Magnus Force

Components of Moment Due to Magnus
Force

Mass

Dynamic Pressure

Position Vector

Total Parachute Great Circle Area
Velocity Vector

Weight Force

Distance from Parachute Center of

Pressure to Center of Gravity
Angle of Attack

Coefficient of Viscosity
Mass Density

Angular Velocity

c-3

Units
ft./sec.2

ft./sec.2

Dimensionless

ft:.-lb./sec.2
1b,
ft.-1b.

ft,-1b.

ft. "lbo

ft,-1b,

1b.-sec.2/ft.
1. /£t
ft.
ft.2
ft./sec.

1b.

ft.

radian
1b.-sec./ft.2
lb.-sec.z/ft.4

radian/sec.



Superscripts

Superscript
b

g

Subscripts
Subscript
1

2,

Definition

Identifies vector resolved into bi system

Identifies vector resolved into 8; system

Definition

Identifies components of vectors along axes
of system identified by superscript

Refers to parachute

Refers to remote conditions

Wind

b
w3 "Wy
0 wy
b
W, 0

C-4
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@

(3)
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10. c_)

c. § Functions of g

Functions of R g
p3

11. RS

md

§ The output 1ists the pertinent initial conditions; and lists,

as functions of R g:
p3

g g g 8 g 3 g g
Ror e Rz Y Va2 o Vo [Vals Voo Vp2 o Vo3

\AE Elg, Ezg, E3g, [E|, t (Time).




